Synthesis and Characterization of Organochromium Complexes fac-Cr(CO)₃(dppe)(η^2 -C₆₀), fac/mer-Cr(CO)₃(dppe)(η^2 -C₆₀) and fac-Cr(CO)₃(L)(dppe) (L = PPh₃, 4-MeC₅H₄N)⁺

Li-Cheng Song,* Ying-Huai Zhu and Qing-Mei Hu

fac-Cr(CO)₃(Ph₃P)(dppe) and fac-Cr(CO)₃(4-MeC₅H₄N)(dppe), respectively.

Department of Chemistry, Nankai University, Tianjin 300071, China Reaction of fac-Cr(CO)₃(MeCN)(dppe) [dppe = 1,2-bis(diphenylphosphino)ethane] or Cr(CO)₄(dppe) with fullerene C_{60} afforded a single isomer fac- $Cr(CO)_3(dppe)(\eta^2-C_{60})$ and an isomeric mixture of fac/mer- $Cr(CO)_3(dppe)(\eta^2-C_{60})$,

whereas the isomer fac-Cr(CO)₃(dppe)(η^2 -C₆₀) reacted with Ph₃P or 4-methylpyridine to give single isomers

Since the discovery of a method for gram-scale isolation of fullerene C₆₀,¹ numerous organotransition metal fullerene C₆₀ derivatives containing a direct metal-to-C₆₀ bond have been prepared and characterized, such as those of Pt,² Ir,³ Ru,⁴ Mo⁵ and W.⁵ However, up to now, no report regarding the synthesis and characterization of chromium complexes of this type has appeared. Herein we report the synthesis and characterization of the first such chromium η^2 -C₆₀ complexes, the single isomer fac-Cr(CO)₃(dppe)(η^2 -C₆₀) and the isomer mixture of *fac*- and *mer*-Cr(CO)₃(dppe)(η^2 -C₆₀), as well as of two organochromium complexes without C₆₀ ligands derived from ligand displacement reactions of fac-Cr(CO)₃(dppe)(η^2 -C₆₀) with Ph₃P or 4-methylpyridine.

One equivalent of fullerene C60 reacted with fac-Cr(CO)₃(MeCN)(dppe) in chlorobenzene at about 95 °C, through a ligand displacement reaction between C₆₀ and MeCN to give a single isomer fac-Cr(CO)₃(dppe)(η^2 -C₆₀) (Scheme 1) in 17% yield.

In principle, the product formed from the above reaction might exist as another isomer, *i.e.* the mer isomer, or as a mixture of the fac and mer isomers (Scheme 1). However, since the ³¹P NMR spectrum of the product shows only one singlet at δ 77.22, the product should be the *fac* isomer. This is because this isomer has two identical P atoms in the same chemical environment.

As seen in Fig. 1, the ¹³C NMR spectrum of the C_{60} core of the fac isomer displays 29 resonance peaks, in which the 4 peaks at δ 150.02, 145.12, 143.40 and 141.43 could be each assigned to each carbon atom (altogether $4 \times 1C$) on the C_s symmetry plane, whereas the 3 peaks with about triple intensity at δ 152.12, 147.61 and 143.71, as well as the other 22 peaks with about double intensity, might be each

assigned to each of four carbon atoms (altogether $3 \times 4C$) and each of two carbon atoms (altogether $22 \times 2C$) on two sides of the symmetry plane, respectively. This is consistent with the C_s symmetry and the C_{60} core having 60 sp²-C atoms.6 No sp3-C signal observed for the C60 core of this isomer may mean that the fullerene C₆₀ is co-ordinated to chromium through a 6:6 bond mainly in an η^2 , π -olefin fashion and thus the metal is not involved in a threemembered ring."

We further found that the η^2 -C₆₀ ligand of *fac*- $Cr(CO)_3(dppe)(\eta^2-C_{60})$ could also be replaced with fac-configuration retention by Ph₃P or 4-methylpyridine in chlorobenzene at reflux to give *fac*-Cr(CO)₃(Ph₃P)(dppe) and fac-Cr(CO)₃(4-MeC₅H₄N)(dppe) in 63 and 72% yield, respectively.

The combustion analysis and spectroscopic data of these two fac isomers are in accord with their structures. For example, the ³¹P NMR spectrum of *fac*-Cr(CO)₃(Ph₃P)(dppe) shows one singlet at δ 55.73 for the P atom in Ph₃P and one singlet at δ 74.76 for two identical P atoms in dppe, whereas that of fac-Cr(CO)₃(4-MeC₅H₄N)(dppe) exhibits only one singlet at δ 75.68 for two identical P atoms in dppe. No coupling observed in the ³¹P NMR between the different P atoms of dppe and Ph₃P in fac-Cr(CO)₃(Ph₃P)(dppe) is obviously due to their similarity in chemical environment.⁸

It is noteworthy that the reaction of $Cr(CO)_4(dppe)$ with C₆₀, different from that of *fac*-Cr(CO)₃(MeCN)(dppe) in refluxing chlorobenzene, afforded a mixture of two isomers fac- and mer-Cr(CO)₃(dppe)(η^2 -C₆₀) (Scheme 1) in 15% yield. The two isomers are very close in polarity and thus could not be separated by conventional chromatography and recrystallization methods. The mixture was charac-

Fig. 1 The ¹³C NMR spectrum of fac-Cr(CO)₃(dppe)(η^2 -C₆₀) (* peaks due to solvent)

J. Chem. Research (S), 1999, 56-57†

^{*}To receive any correspondence.

^{*}This is a Short Paper as defined in the Instructions for Authors, Section 5.0 [see J. Chem. Research (S), 1999, Issue 1]; there is therefore no corresponding material in J. Chem. Research (M).

terized by elemental analysis, IR, UV-vis and NMR (¹H and ³¹P) spectroscopy. The ³¹P NMR spectrum shows three singlets at δ 76.38, 77.39 and 77.69. Apparently, the singlet at δ 77.39 should be assigned to two identical P atoms of the *fac* isomer, whereas the two singlets at δ 76.38 and 77.69 should be assigned to two different P atoms of the *mer* isomer. Although coupling between the two different P atoms of dppe in the *mer* isomer could take place through the chromium atom, it is not observed since they have very similar chemical environments.⁸ In view of C₆₀ being electron-withdrawing, the downfield singlet for the *mer* isomer should be assigned to the P atom *cis* to the C₆₀ ligand and the upfield singlet to the P atom *trans* to C₆₀.

The IR spectrum of this isomer mixture, similar to that of the *fac* isomer, shows four absorption bands characteristic of the C_{60} ligand. However, in contrast to the *fac* isomer which shows three absorption bands for its terminal carbonyls, the isomer mixture exhibits four absorption bands for its terminal carbonyls. This is consistent with the observation that the number of IR active bands cannot exceed but may be less than the number of CO ligands in the complexes.⁷

Experimental

All reactions were carried out under a nitrogen atmosphere. Silica gel (300–400 mesh) for column chromatography (15×2 cm) was activated for 1 h at 120 °C. Toluene and light petroleum (bp 60–90 °C) were dried and deoxygenated by distillation from sodium–benzophenone. Chlorobenzene and chloroform were dried by distillation from P₂O₅. Triphenylphosphine, 4-methylpyridine and fullerene C₆₀ (99.9%) were of commercial origin. The complexes Cr(CO)₄(dppe)⁸ and *fac*-Cr(CO)₃(MeCN)(dppe)⁹ were prepared according to the literature. The IR and UV-vis spectra were recorded on a Nicolet 170 SX FTIR and a Shimadzu UV-240 spectrometer respectively, NMR spectra on a JEOL 90Q, Bruker AC-P 200 or UNITY plus-400 spectrometer. Elemental analysis, MS and melting points were determined using a Yanaco CHN Corder MT-3 analyzer, a Zabspec spectrometer and a Yanaco MP-500 apparatus, respectively.

fac- $Cr(CO)_3(dppe)(\eta^2 - C_{60})$.—A 100 ml two-necked flask was charged with fac-Cr(CO)₃(MeCN)(dppe) (58 mg, 0.10 mmol), C₆₀ (72 mg, 0.10 mmol) and chlorobenzene (30 ml). The reaction mixture was heated to about 95 °C and stirred at this temperature for 18 h. After removal of the solvent under reduced pressure, the residue was separated by column chromatography using 1:4 (v/v) toluene-light petroleum as eluent under anaerobic conditions. From the first purple band we obtained 8.5 mg of unchanged C_{60} and from the second light green band 19 mg (17% based on consumed C₆₀) of fac-Cr(CO)₃(dppe)(η^2 -C₆₀) as a greenish solid; mp 110–112 °C. $\tilde{\nu}_{max}/cm^{-1}$ 1929, 1861, 1843 (C=O), 1427, 1182, 576, ⁵27 (C₆₀). $\delta_{\rm H}$ (CDCl₁) 2.59 (d, J = 16 Hz, 4 H, 2CH₂), 7.24–7.56 (m, 20 H, 4C₆H₅). $\delta(^{31}$ P) (CDCl₃) 77.22. $\delta(^{13}$ C) [100.6 MHz, C₆D₆, 0.006 M,Cr(acac)₃] 210.30, 210.95 (s, s, CO); 153.75, 153.11, 152.60, 152.12, 151.82, 150.75, 150.36, 150.02, 149.50, 149.21, 148.53, 140.62, 140.03 (s, 29 resonances for C₆₀); 135.25, 134.91, 133.53, 132.03, 130.07 (5 resonances for C_6H_5); 33.00 (d, J = 27.2 Hz, 2CH₂) UV-vis(toluene, 1.5×10^{-3} M): $\lambda_{max}(\log \varepsilon)$ 283.7 (2.97), 333.5 (2.75), 406.5 (1.94), 431.9 nm (1.79). m/z 720 (C₆₀⁺), 1254 (M⁺) (Found: C, 84.90; H, 2.03. C₈₉H₂₄CrO₃P₂ requires C, 85.17; H, 1.93%).

fac- $Cr(CO)_3(Ph_3P)(dppe)$.—A 50 ml two-necked flask was charged with fac- $Cr(CO)_3(dppe)(\eta^2-C_{60})$ (13 mg, 0.01 mmol), Ph_3P (3 mg, 0.01 mmol) and chlorobenzene (20 ml). The reaction mixture was

refluxed for 8 h. Removal of the solvent under vacuum gave a yellow-brown residue, which was extracted with 1:1 (v/v) CHCl₃–light petroleum. The extracts were evaporated to dryness under vacuum to give 5 mg (63%) of *fac*-Cr(CO)₃(Ph₃P)(dppe) as a yellowish solid, mp 173–175 °C. $\tilde{\nu}_{max}/cm^{-1}$ 1950, 1901, 1855 (C=O). $\delta_{\rm H}$ (CDCl₃) 2.58 (d, *J*_{PH}=16 Hz, 4 H, 2CH₂), 7.35–7.58 (m, 35 H, 7C₆H₅). δ (³¹P) (CDCl₃) 55.73 (s, PPh₃), 74.76 (s, 2PPh₂) (Found: C, 70.59; H, 4.82. C₄₇H₃₉CrO₃P₃ requires C, 70.85; H, 4.93%).

fac-Cr(CO)₃(4-MeC₅H₄N)(dppe).—A 50 ml two-necked flask was charged with *fac*-Cr(CO)₃(dppe)(η^2 -C₆₀) (13 mg, 0.01 mmol), 4-methylpyridine (0.01 ml, 0.10 mmol) and chlorobenzene (20 ml). The reaction mixture was refluxed for 6 h. Removal of the solvent under vacuum afforded a viscous residue, which was washed with light petroleum (2 × 20 ml) and then extracted with CHCl₃. The extracts were evaporated to dryness under vacuum to give 4.5 mg(72%) of *fac*-Cr(CO)₃(4-MeC₅H₄N)(dppe) as a yellow solid, mp 150–152 °C. $\tilde{\nu}_{max}$ /cm⁻¹ 1944, 1895, 1850 (C=O). $\delta_{\rm H}$ (CDCl₃) 0.84 (s, 3 H, CH₃), 2.59 (d, *J* = 14 Hz, 4H, 2CH₂), 7.36–7.55 (m, 24 H, 4C₆H₅, C₅H₄N). δ (³¹P) (CDCl₃) 75.68 (s, 2PPh₂) (Found: C, 66.94; H, 4.98; N, 2.23. C₃₅H₃₁CrNO₃P₂ requires C, 66.98; H, 4.71; N, 2.13%).

fac- and mer-Cr(CO)₃(dppe)(η^2 -C₆₀).—A 100 ml two-necked flask was charged with Cr(CO)₄(dppe) (57 mg, 0.10 mmol), C₆₀ (72 mg, 0.10 mmol) and chlorobenzene (40 ml). The reaction mixture was refluxed for 24 h and then the same work-up was followed as that for the isomer *fac*-Cr(CO)₃(dppe)(η^2 -C₆₀). Unchanged C₆₀ (10 mg) and 16 mg (15% based on consumed C₆₀) of an isomer mixture of *fac*- and *mer*-Cr(CO)₃(dppe)(η^2 -C₆₀) were obtained as a greenish solid, mp 110–116 °C. $\tilde{\nu}_{max}/cm^{-1}$ 1930, 1877, 1860, 1799 (C=O) 1433, 1183, 586, 519 (C₆₀). $\delta_{\rm H}$ (CDCl₃) 2.58 (d, *J* = 16 Hz, 4 H, 2CH₂), 2.52 (d, *J* = 16 Hz, 4 H, 2CH₂), 7.24–7.58 (m, 20 H, 4C₆H₅). $\delta(^{31}{\rm P})$ (CDCl₃) 77.39 (s, P of *fac* isomer), 76.38, 77.69 (s, s, P of *mer* isomer) UV-vis(toluene, 1.5 × 10⁻³ M): $\lambda_{max}(\log \varepsilon)$ 285.3 (2.97), 344.3 (2.43), 436.3 nm (1.79) (Found: C, 84.90; H, 2.03, C₈₉H₂₄CrO₃P₂ requires C, 85.17; H, 1.93%).

We are grateful to the National Natural Science Foundation of China and the Special Foundation of State Education Committee of China and Laboratory of Organometallic Chemistry at Shanghai Institute of Organic Chemistry for financial support.

Received, 11th August 1998; Accepted, 7th October 1998 Paper E/8/06360E

References

- 1 W. Krätschmer, L. D. Lamb, K. Fostiropoulos and D. R. Huffman, *Nature (London)*, 1990, **347**, 354.
- 2 P. J. Fagan, J. C. Calabrese and B. Malone, J. Am. Chem. Soc., 1991, **113**, 9408.
- 3 A. L. Balch, V. J. Catalano and J. W. Lee, *Inorg. Chem.*, 1991, **30**, 3980.
- 4 I. J. Mavunkal, Y. Chi, S.-M. Peng and G.-H. Lee, *Organometallics*, 1995, **14**, 4454.
- 5 H.-F. Hsu and J. R. Shapley, *Proc. Electrochem. Soc.*, 1995, 95–10, 1087; L.-C. Song, Y.-H. Zhu and Q.-M. Hu, *Polyhedron*, 1997, 16, 2141.
- 6 W. H. Miles and P. M. Smiley, J. Org. Chem., 1996, 61, 2559.
- 7 J. P. Collman and L. S. Hegedus, *Principles and Applications of Organotransition Metal Chemistry*, University Science Books, Mill Valley, CA, 1980, p. 86.
- 8 S. O. Grim, W. L. Briggs, R. C. Barth, C. A. Tolman and J. P. Jesson, *Inorg. Chem.*, 1974, **13**, 1095.
- 9 G. J. Kubas, G. D. Jarvinen and R. R. Ryan, J. Am. Chem. Soc., 1983, 105, 1883.